通用啟發式演算法於背包問題之比較研究

陳明華¹ 周郁文² 嶺東科技大學 資訊管理研究所^{1,2} mhc@teamail.ltu.edu.tw¹ vivian198715@yahoo.com.tw²

摘要

本研究希望透過多種演算法之比較分析,以找 出較佳演算法。因此,選擇通用啟發式演算法中的 基因演算法、粒子群演算法、量子遺傳算法此三種 演算法應用於背包問題進行比較分析,以找出較佳 演算法。

其中,量子遺傳算法是將量子計算與基因演算 法相結合而衍生的新演算法。該演算法採用量子位 元方式產生染色體,並透過量子旋轉門的改變進行 種群的演化。因此將量子遺傳算法與基因演算法、 粒子群演算法進行比較,以驗證量子遺傳算法是否 能找到更好適應值。

首先將基因演算法與粒子群演算法,依照最基本的演算法進行改良,將兩種演算法各發展出六種不同的演算程序,並應用於背包問題,進行比較並找出較佳的演算程序。之後將較佳之基因演算程序、粒子群演算程序與量子遺傳算法依照不同物品數進行比較分析,其結果發現量子遺傳算法性能優於基因演算法與粒子群演算法。

關鍵詞:基因演算法、量子遺傳算法、粒子群演算 法、背包問題。

1. 前言

通用啟發式演算法(meta-heuristic algorithm)一般 用 以 求 解 組 合 性 最 佳 化 (combinatorial optimization)問題。通用啟發式演算法的概念是由觀察自然界所獲得的想法,而常用通用啟發式演算法有以下六種:模擬退火法(simulated annealing,SA)、禁忌搜尋法(tabu search,TS)、基因演算法(genetic algorithms,GA)、粒子群最佳化演算法(particle swarm optimization,PSO)、蟻群最佳化演算法(Quantum-inspired genetic algorithm,QGA)[4]。

其中 QGA 是將量子計算與 GA 相結合而衍生 出新的混合式演算法,因此本研究將探討此新演算 法其性能是否優於 GA。另外,因為 PSO 與 GA 類 似,因此一併選入進行比較,以找出較佳演算法。

2. 研究理論與方法

本節將針對所使用之演算法進行簡單介紹,其 詳細理論請參考各演算法之文獻。

2.1 基因演算法

基因演算法(Genetic Algorithms, GA),為 John Holland 所提出的,主要是根據生物學家達爾文的物種進化論而發展出的演算法,也就是利用基因遺傳的原則—基因有選擇(Selection)、交配(Crossover)及突變(Mutation)的能力[1]。GA 根據問題所定義的適應值(Fitness)作為指標,再透過基因運算:選擇、交配及突變進行適當調整搜尋方向及區域,以找到問題的最佳解或近似最佳解[3]。

本研究依照原始 GA 進行改良,其 GA_1 是在選擇的部分將父母隨機選擇改為父輪盤、母隨機方式進行測試。GA_2 突變的部分則是在演化前半段使用大突變。GA_3 交配與突變部分則是以自適應方式進行。GA_4 交配分部則由原始的隨機單點切入改為隨機雙點切入。GA_5 交配分部使用自適應方式,突變則用多基因隨機突變加上自適應,表 1 為本研究所歸類出的 GA 之方法。

表 1 本研究所使用之 GA 方法

代號	方法名稱	選擇	交配	突變
GA_0	最基本 GA	父母隨機	隨機單 點切	單基因隨 機突變
GA_1	基本 GA	父輪盤母 隨機	隨機單 點切	單基因隨 機突變
GA_2	大突變 GA	父輪盤母 隨機	隨機單 點切	演化前半 段使用大 突變
GA_3	自適應 GA	父輪盤母 隨機	自適應 單點切	自適應
GA_4	雙切點交配 GA	父輪盤母 隨機	隨機雙 點切	單基因隨 機突變
GA_5	自適應多基 因突變 GA		自適應 單點切	多基因隨 機 突 變 + 自適應

2.2 粒子群最佳化演算法

粒子群最佳化演算法(Particle Swarm Optimization, PSO),由 James Kennedy和 Russell Eberhart 兩位學者於1995年時所提出,是一種以群體為基礎(Population-based)的最佳化搜尋技術,是

一種模擬鳥群覓食的社會行為所衍生的技術[5,6]。 PSO 與 GA 類似,同樣都是先產生一組初始解,再 經過進化的方式來取得最佳值,不同的地方為 PSO 沒有交配(Crossover)及突變(Mutation),是屬於單向 的訊息流動,整個搜尋更新過程是跟隨當前最佳解 的機制。因此,與 GA 相比較之下,PSO 能更快的 收斂於最佳解處[2]。

本研究依照原始 PSO 進行改良,其 PSO_1 在權重部分使用自適應權重法。PSO_2 在權重部分使用隨機權重法。PSO_3 則是將學習因子的部分修改為異步變化學習因子。PSO_4 為二階粒子群演算法。PSO_5 為加入交配機率的混合式 PSO,其表 2 為本研究所歸類出的 PSO 之方法。

表 2 本研究所使用之 PSO 方法

代號	方法名稱	類別
PSO_0	最最基本 PSO	基本 PSO
PSO_1	自適應權重法 PSO	權重改進
PSO_2	隨機權重法 PSO	惟里以连
PSO_3	異步變化學習因子 PSO	改變學習因子
PSO_4	二階 PSO	二階
PSO_5	基於雜交 PSO	混合

2.3 量子遺傳算法

量子遺傳算法 (Quantum-inspired genetic algorithm, QGA)由 Narayanan 等學者於 1996 年提出,概念為將量子計算與 GA 相結合而衍生的新演算法[8]。

2.3.1 量子比特編碼

在 QGA 中,染色體的基因是用量子位元(Q-bit) 或機率幅表示,一個 Q-bit 可表示為:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \tag{1}$$

其中 α 、 β 分別為0或1的機率幅,且需滿足 $|\alpha|^2+|\beta|^2=1$ 的條件。因此一個長度為m的量子染色體可表示為:

2.3.2 量子門更新操作

Q-bit 透過量子門旋轉進行演化,因此量子門的設計是 QGA 實現的關鍵,設計的好壞,會直接影響 QGA 的性能。而本研究的量子門旋轉角度採

用 Kuk-Hyun Han 等學者所提出的設計。其量子旋轉門更新如下[7]:

$$\begin{bmatrix} \alpha_i' \\ \beta_i' \end{bmatrix} = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{bmatrix} \begin{bmatrix} \alpha_i \\ \beta_i \end{bmatrix}$$
(3)

其中, (α_i, β_i) 為染色體中第i 個 Q-bit, $\theta_i = s(\alpha_i, \beta_i) \cdot \triangle \theta_i$,而 (α_i, β_i) 值為通過量子旋轉門更新後的新基因, $s(\alpha_i, \beta_i)$ 和 $\triangle \theta_i$ 為已知設定值,可由表 3 查詢旋轉角度。本研究在這部分的參數值採用 Kuk-Hyun Han 等學者研究中所設計的角度[7]。 其相關詳細 QGA 之理論請參考文獻[7]。

表 3 旋轉角調整表

26	b_i	$f(x) \ge$	$\triangle \theta_i$	$s(\alpha_i, \beta_i)$				
x_i	$b_i f(x) \ge f(b)$	$\triangle U_i$	$\alpha_i \beta_i > 0$	$\alpha_i \beta_i < 0$	$\alpha = 0$	$\beta_i=0$		
0	0	false	0	0	0	0	0	
0	0	true	0	0	0	0	0	
0	1	false	0	0	0	0	0	
0	1	true	0.05π	-1	+1	±1	0	
1	0	false	0.01π	-1	+1	±1	0	
1	0	true	0.025π	+1	-1	0	±1	
1	1	false	0.005π	+1	-1	0	±1	
1	1	true	0.025π	+1	-1	0	±1	

3. 研究問題與參數設定

所謂的背包問題(Knapsack Problem),是指有一個背包和 m 個物品,其中第 i 個物品的重量為 $w_i(w_1,w_2,...,w_i,...,w_m)$, 其 所 對 應 的 價 值 為 $p_i(p_1,p_2,...,p_i,...,p_m)$,而背包能裝載的總重量為 C,如何在不超過總重量的限制下,該如何選擇物品才能使背包中物品的總價值最大?

在選擇裝入背包的物品時,對每種物品i只有兩種選擇,即放入背包或不放入背包。且不能將物品i裝入背包多次,也不能只裝入部分物品i。其公式為:

$$\max f = \sum_{i=1}^{m} p_i x_i$$
 subject to
$$\sum_{i=1}^{m} w_i x_i \le C$$
 where
$$x_i = \begin{cases} 0 & \text{,} 不選取該物品 \\ 1 & \text{,} 選取該物品 \end{cases}$$
 (4)

本研究針對不同的物品數量進行測試,將物品個數 m 分別設為 100、250 和 500 個進行測試,其物品重量 w_i 為 1~10 之間均勻分布的隨機數,而物品價值 $p_i=w_i+5$,背包平均總重量為 $C=\frac{1}{2}\sum_{w_i}^{m}w_i$

首先,先將物品以隨機方式產生並計算出相對價值及背包總重量。當m=100時,C=281.5;當m=250時,C=736.5;當m=500時,C=1365.5。將這三組參數分別代入GA、PSO 及QGA 中求背包問題的解。

3.1 GA 與 PSO 之參數設定

本研究在 GA 與 PSO 參數設計上,為參考其他 學者文獻並經過測試設計而成,其參數值如表 4 與 表 5。

表	4	各種	GA	之參	數設定	E
---	---	----	----	----	-----	---

演	算法代號	GA_0	GA_1	GA_2	GA_3	GA_4	GA_5
	交配機 率 1	0.9	0.9	0.9	0.9	0.9	0.9
_	交配機率2	_	١	_	0.5	-	0.5
條件	突變機率1	0.04	0.04	0.04	0.04	0.04	0.04
參數	突變機率2				0.02		0.02
設定	密集因子	-		0.6		-	_
	大 突 變 機率			0.2			_

表 5 各種 PSO 之參數設定

	演算法代號	PSO_0	PSO_1	PSO_2	PSO_3	PSO_4	PSO_5
	學習因子1	2	2	2	_	1	2
	學習因子 1 最 大值				2.5		-
	學習因子 1 最 小值	_	_	_	0.5	_	_
	學習因子2	2	2	2		1	2
已.	學習因子 2 最 大值	1	1	-	0.5	1	-
知條	學習因子 2 最小值	_		_	2.5	-	_
件血	慣性權重(w)	0.5	_	_	0.9	0.7	0.7
參數	最大權重	_	0.9	_		_	_
数設定	隨機權重平均 值的最大值		-	0.8	1	1	
火	最小權重	_	0.4	_	_	_	_
	隨機權重平均 值的最小值	_	_	0.5	_	_	_
	隨機權重方差	_	_	0.2	_	_	_
	交配機率	_	_	_	_	_	0.9
	交配池之大小 比例	_	_	_	_	_	0.2

3.2 QGA 之染色體設定

QGA 中,一個量子染色體即可攜帶多個狀態的信息,能帶來豐富的種群,進而保持群體的多樣性。而本研究針對染色體的部分,分別針對不同的染色體數進行測試,各執行 50 次,並記錄每次的執行結果,並選出 50 次結果中,最優的適應值與最差的適應值及 50 次結果平均後之適應值。藉由此測試,以瞭解染色體增加,其適應值變化為何。

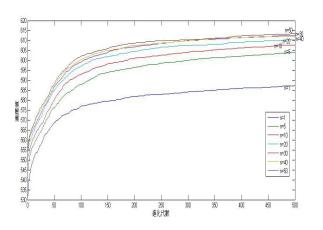


圖 1QGA 染色體測試

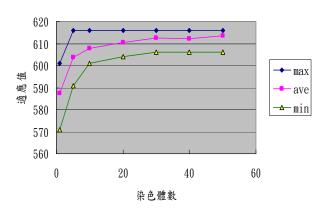


圖 2 各染色體之適應值比較

由圖 1、圖 2 中可看出,當染色體數 1~30 時平均適應值有逐漸成長的趨勢,但當染色體數 40 時,其平均適應值會略為下降,且就算在增加染色體數,適應值也沒有明顯的升高,因此本研究在染色體數參數設為 30。

4. 結果與討論

首先,將上述背包問題公式分別代入 GA 與 PSO 之各演算程序中,並各選出較佳的兩種演算程 序,之後在與 GQA 相比較。

4.1 各種 GA 演算程序之比較

同樣的演算法,設計出的不同演算程序,其適 應值差異並不大,但還是可以找出適應值較佳之演 算程序。

由圖 3 中可明顯看出 GA_5 的適應值為最佳, 其次為 GA_3,而 GA_0 適應值為最差,因此將選 擇 GA_5 與 GA_3 此兩種演算程序再與 QGA、PSO 相比較。

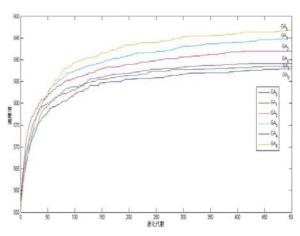


圖 3 各基因演算程序之適應值比較

4.2 各種 PSO 演算程序之比較

由圖 4 中可明顯看出 PSO_0 的適應值為最佳, 其次為 PSO_4,而 PSO_3 適應值為最差,因此將選 擇 PSO_0 與 PSO_4 此雨種演算程序再與 GA、QGA 相比較。

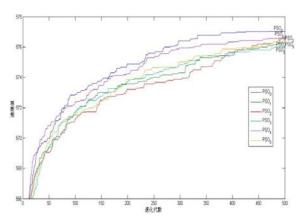


圖 4 各 PSO 演算程序之適應值比較

4.3 GA、QGA 與 PSO 之比較

將 GA、QGA 與 PSO 代入背包問題,各執行 50 次,並記錄每次執行結果之適應值,其表 6 為當 物品數為 100 時,執行 50 次中最大及最小適應值,

和 50 次平均之適應值。由圖 5 可看出一開始各演算法所找到的適應值差不多,而 PSO 到 50 代後可明顯看出其適應值變化並不明顯;GA 演化到 150 代後可明顯看出其適應值變化並不明顯,由圖中可發現,相同的演算法所求得的適應值差距並不大。在 QGA 的部分則可明顯看出所找到之適應值明顯優於 GA、與 PSO。在執行時間的部分由圖 6 可看出 PSO 的執行時間最久,而 GA 的執行時間最快。

表 6 當 m=100 時, GA、QGA 與 PSO 之適應值

物品 個數	執征	行結果	GA_3	GA_5	QGA	PSO_0	PSO_7
	適	最優	601	606	616	586	585
	應	平均	595	596	611	577	576
100	值	最差	586	587	606	571	571
		需時間 /次數)	1.73	1.88	17.35	78.09	58.74

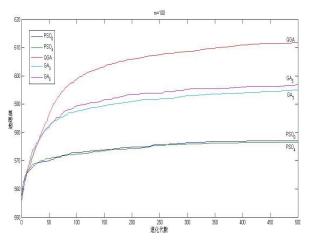


圖 5 當 m=100 時,各演算法之適應值

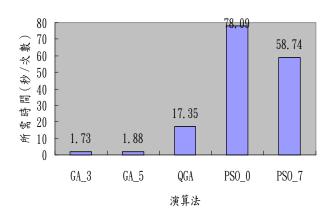


圖 6當 m=100 時,各演算法執行時間

表 7 為當物品數為 250 時,執行 50 次中最大 及最小適應值,和 50 次平均之適應值。由圖 7 可 看出一開始 PSO 所找到的適應值較佳,但演化 50 代後就趨於平緩了;而 GA 雖然一開始適應值最差,但演化至 25 代後,其適應值便高於 PSO 所找尋到的最佳適應值。其 QGA 適應值優於其他演算法。在執行時間的部分由圖 8 可看出 PSO 的執行時間最久,而 GA 的執行時間最快。

表 7 當 m=250 時, GA、QGA 與 PSO 之適應值

物品 個數	執行結果		GA_3	GA_5	QGA	PSO_0	PSO_7
	適	最優	1506	1496	1536	1461	1458
	應	平均	1481	1477	1521	1436	1441
250	值	最差	1461	1460	1491	1426	1426
		需時間 /次數)	2.14	2.68	42.34	192.2	130.7

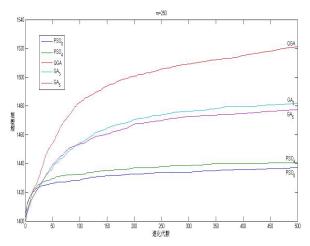


圖 7當 m=250 時,各演算法之適應值

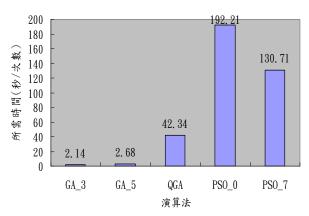


圖 8 當 m=250 時,各演算法執行時間

表 8 為當物品數為 500 時,執行 50 次中最大及最小適應值,和 50 次平均之適應值。由圖 9 可看出一開始 PSO 所找到的適應值較佳,但演化 50 代後就趨於平緩了;而 GA 雖然一開始適應值最差,但演化至 75 代後,其適應值便高於 PSO 所找尋到的最佳適應值。其 QGA 適應值優於其他演算

法。在執行時間的部分由圖 10 可看出 PSO 的執行時間最久,而 GA 的執行時間最快。

表 8 當 m=500 時, GA、QGA 與 PSO 之適應值

物品 個數	執行結果		GA_3	GA_5	QGA	PSO_0	PSO_7
	適	最優	2855	2840	2915	2775	2800
	應	平均	2817	2807	2876	5742	2759
500	值	最差	2780	2764	2824	2724	2727
		需時間 /次數)	2.74	3.63	93.92	384.7	321.7

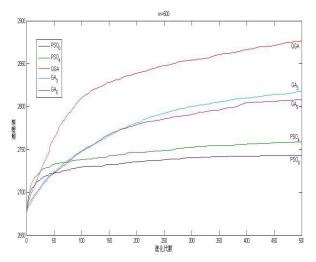


圖 9 當 m=500 時,各演算法之適應值

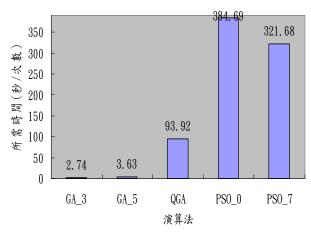


圖 10 當 m=500 時,各演算法執行時間

接著將此三種物品所得到的結果加總後平均 再進行比較,其結果如表 9。藉由圖 11 可明顯看出, 執行 50 次後,所得到的最大、最小及平均適應值, 皆以 QGA 所得的值為最優。由圖 12 中可看出其執 行時間以 PSO 為最久, GA 為最快。雖然 QGA 執 行速度不如 GA,但所得之適應值卻優於 GA,能找 出更優的近似最佳解。

物品 個數	執彳	于結果	GA_3	GA_5	QGA	PSO_0	PSO_7
	適	最優	1654	1647	1689	1607	1614
總	應	平均	1631	1627	1669	1585	1592
平	值	最差	1609	1603	1640	1573	1574
均		需時間 /次數)	2.2	2.73	51.2	218.3	170.4

表 9 總平均後 GA、QGA 與 PSO 之適應值

1700 1680 1660 1640 坦 1620 坦 1600 切 1580 1560 1540 1520						→ max → ave → min
1000	GA_3	GA_5	QGA 演算法	PS0_0	PS0_7	

圖 11 總平均後各演算法之適應值

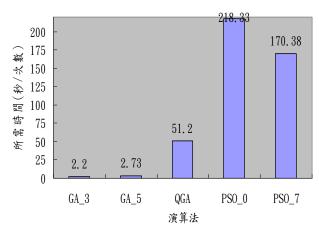


圖 12 總平均後各演算法執行時間

5. 結論與建議

就研究結果,經分析討論後,提出以下結論與 建議:

(1) 當 QGA 的種群規模較小時,其適應值與 GA、 PSO 差距不多,但若將種群規模提高,則可發 現所求得的適應值遠高於 GA、PSO。

- (2) 執行速度的部分,QGA 的執行時間會比 GA 久,經程式剖析後發現量子門旋轉的部分要花 較長的時間計算搜尋。因此後續研究的部分可 針對量子門旋轉進行修改,以提升 QGA 收斂 速度。
- (3) 本研究在量子旋轉門的部分,△ θ 值未進行測試,後續研究可針對此部分進行測試,評估是否能找到更好的適應值。
- (4) 由研究結果中發現 GA 收斂速度為最快,因此 後續研究可將 GA 的交配與突變套入 QGA 中, 以研究是否能加快收斂速度並提高性能。

参考文獻

- [1] 周鵬程,「遺傳算法原理與應用—活用 Matlab(修 定三版)」,全華圖書股份有限公司,2007 年 8 月。
- [2] 郭信川、張建仁、劉清祥,「粒子群演算法於最佳化問題之研究」, 科技與管理學術研討會 pp419-432, 2004。
- [3] 黃意純,「應用基因演算法於機台組態配置之研究」, 南華大學資訊管理學系碩士論文, 2009。
- [4] 廖慶榮,「作業研究」, 華泰文化出版, 2009年2 版。
- [5] Eberhart, R.C. and Kennedy, J., "A new optimizer using particle swarm theory." Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp.39-43, 1995.
- [6] Kennedy, J. and Eberhart, R.C, "Particle swarm optimization." Proc. IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, pp. IV: 1942-1948, 1995.
- [7] Kuk-Hyun Han, Chi-Ho Lee, Jong-Hwan Kim, "Parallel Quantum-inspired Genetic Algorithm for Combinatorial Optimization Problem." Proceedings of the 2001 IEEE congress on Evolutionary Computation Seoul, Korea., pp1422-1429, 2001.
- [8] Narayanan A, Moore M., "Quantum inspired genetic algorithms." Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96). USA:IEEE Press,.pp61-66, 1996.